FINITE ELEVIENT METHODS						
Course	19ME4701B	Year	IV	Semester	Ι	
Code						
Course	Program	Branch	ME	Course Type	Theory	
Category:	Elective				Theory	
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil	
Continuous	30	Semester	70	Total Marks:	100	
Evaluation:		End				
		Evaluation:				

FINITE ELEMENT METHODS

Cours	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	CO1 Solve mechanics of solids problems by implementing numerical				
	methods with the concepts of elasticity.				
CO2	CO2 Formulate and solve axially loaded bar Problems.				
CO3	CO3 Formulate and solve truss and beam problems.				
CO4	Develop formulations for 2-D Problem using triangular and	L3			
	quadrilateral elements.				
CO5	Develop formulations and solve eigen value problems.	L3			

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1								2	3	1
CO2	3	3	1	1								2	3	1
CO3	3	3	1	1								2	3	1
CO4	3	3	1	1								2	3	1
CO5	3	3	1	1								2	3	1

	Course Content	Mapped CO s
UNIT-1	FUNDAMENTAL CONCEPTS : Historical Background of FEM, Stress and Equilibrium, Boundary conditions, Strain displacement relations, stress-strain relations, Potential energy and equilibrium, Principle of Virtual work, The Rayleigh-Ritz method.	CO1
UNIT-2	AXIALLY LOADED BARS : Finite Element Formulations, Fundamental concepts, Two node bar element, Shape functions, Formulation of stiffness matrix and Load Vectors, Assembly of element stiffness matrices and load vectors, Boundary conditions: Elimination method, Penalty Method, Temperature effects, Examples of Axially Loaded Members.	CO 2
UNIT-3	ANALYSIS OF PLANE TRUSSES: Plane Trusses, Local and Global Coordinate systems, Element Stiffness Matrix, Stress Calculations, Example of plane Truss with three members ANALYSIS OF BEAMS: Two nodes beam Element, shape functions, element stiffness matrix and load vectors, simple problems on beams with distributed and point loads.	CO3

UNIT-4	TWO DIMENSIONAL PROBLEMS : Finite Element Modeling, isoperimetric representation, Constant Strain Triangle (CST) Element Stiffness, Force terms, Stress calculation, Problem modeling and boundary conditions. Plane Stress and plane Strain Problems using CST Element, formulation of 4-noded quadrilateral element. Problems on isoperimetric formulation of 4-noded quadrilateral element, Numerical integration – Gaussian Quadrature approach.	CO4
UNIT-5	FINITE ELEMENTS IN STRUCTURAL DYNAMICS : Dynamic equations, eigen value problems, and their solution methods, simple problems on bar and beam.	CO5

	Learning Resources					
Text	1. Introduction to Finite Elements in Engineering (revised 4th edition), by					
Books:	Tirupathi R. Chandrupatla, Ashok D. Belegundu, Pearson Education					
	Limited, 2011					
Reference	1. Singiresu S.Rao, Finite element Method in Engineering, 5ed, Elsevier, 2012.					
Books:						
	2. Reddy, J.N., Finite Element Method in Engineering, Tata McGraw Hill,					
	2017.					
E-	https://nptel.ac.in/courses/112/104/112104115/					
Resources						
& other						
digital						
Material:						